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Abstract

Purpose – The paper aims to introduce a new algorithm based on the boundary integral method
developed to solve moving boundary phase change problem subject to all possible cases of cyclic
boundary temperature.

Design/methodology/approach – In the present paper, the phase change problem with periodic
boundary temperature, which may be above or below the phase change temperature, is analyzed. The
analysis is based on applying the boundary integral method in a new numerical algorithm. There are
two main topics of the analysis herein. The first one is to study the direct effect of the cyclic boundary
temperature on the movement of the moving boundary for various Stefan numbers. The second one is
check that the proposed method covers all possible cases of cyclic boundary temperature with respect
to the phase change temperature.

Findings – When using the proposed method, it is found an easy mathematical manipulation and the
results can be improved when fine time step size used.

Originality/value – The proposed method is a very new method, which can be applied to any case of
moving boundary phase change problem subject to any case of cyclic boundary temperature. Also the
proposed method takes into consideration different parameters that affect directly on the evolution of
the moving boundary such as Stefan number, etc.
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1. Introduction
Phase change problems occur in many areas of practical interest such as the metal,
glass, plastic and oil industries, space vehicles design, preservation the food and
plasma-physics. Phase change problems with time-dependent boundary conditions
require special numerical techniques (Furzeland, 1980; Gupta and Kumar, 1980, 1981;
Menning and Özisik, 1985; Yao and Prusa, 1989; Samarskii et al., 1993), requiring small
time steps and small spatial grid size for accurate calculation (Fox, 1975).

Phase change problem subjected to periodic boundary conditions are important for
practical cases involving melting and solidification of ice and industrial processes with
cyclical surface temperature or heat flux variation. For such applications, both the
moving boundary and the internal temperature distribution are very important.
Rizwan (1999) developed a nodal integral method (NIM), in which, both time and
spatial domain were discretized, then using a special transformation to fix the domain
and finally, integrate in both directions simultaneously.

In the present paper, the phase change problem with periodic boundary temperature,
which may be above or below the phase change temperature, is analyzed. The analysis is
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based on applying the boundary integral method (Ahmed and Wrobel, 1995; Ahmed,
1997; Ahmed and Megahed, 1998) in a new numerical algorithm.

There are two main topics of the analysis herein. The first one is to study the direct
effect of the cyclic boundary temperature on the movement of the moving boundary for
various Stefan numbers. The second one is check that the proposed method covers all
possible cases of cyclic boundary temperature with respect to the phase change
temperature.

2. Problem description and formulation
Consider one-dimensional phase change problem bounded by a fixed boundary x ¼ 0
and the other side is free to move as a function of time, x ¼ s(t). The problem can be
recast as follows:

›Tðx; tÞ

›t
¼ a

›2Tðx; tÞ

›x 2
0 # x # sðtÞ ð1Þ

Tðx; tÞ ¼ f ðtÞ x ¼ 0 ð2Þ

Tðx; tÞ ¼ Tpc x ¼ sðtÞ ð3Þ

Tðx; tÞ ¼ Ti t ¼ 0 ð4Þ

›Tðx; tÞ

›x
¼ 2Ste

dxðtÞ

dt
x ¼ sðtÞ ð5Þ

In the above set of equations, f(t) represents the Dirichlet periodic input temperature at
the boundary x ¼ 0, and Ste is the Stefan number.

3. Boundary integral method
3.1 Case (1): fixed domain formulation
For fixed domain problem bounded by x ¼ 0 and x ¼ ‘, where ‘ is a truncated long
enough boundary, with Dirichlet boundary condition at x ¼ 0 and Neumann boundary
condition at x ¼ ‘, the boundary integral formulation for equation (1) can be recast in
the following general form as follows (Ahmed and Wrobel, 1995):

CðzÞTðz; tFÞ ¼

Z tF

to

T*ðz; x; t; tFÞ
›Tðx; tÞ

›x
2 Tðx; tÞ

›T*ðz; x; t; tFÞ

›x

� �‘

0

dt

þ

Z ‘

0

Tðx; 0ÞT*ðz; x; 0; tFÞ dx ð6Þ

3.2 Case (2): moving domain formulation
In this formulation the set of equations (1)-(5) are used in the boundary integral
formulation. According to Shaw (1982) and Wrobel (1983) this set of equations can be
recast in the following boundary integral equation in its general form:
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CðzÞTðz; tFÞ ¼

Z tF

to

�
T* ðz; x; t; tF Þ

›Tðx; tÞ

›x
2 Tðx; tÞ

›T* ðz; x; t; tFÞ

›x

þ Tðx; tÞT* ðz; x; t; tF Þ
dsðtÞ

dt

�sðtÞ

0

dt

ð7Þ

Equations (6) and (7) are called the boundary integral formulas for fixed and moving
problem, respectively. In these equations the point z is called the source point and the
coefficient C(z ) can only take the value of 0.5 for a boundary point and 1 for an internal
point.

4. Development the proposed algorithm
The proposed algorithm is based on treating the location of the moving boundary once
as a boundary point, when applying the moving domain boundary integral code, and
once more as an internal point when applying the fixed domain boundary integral
code. The systematic diagram for the proposed procedure at two successive time steps
is shown in Figure 1.

4.1 The main steps of the proposed method can be summarized as follow
. At the first time step tj, guess an initial position of the moving boundary s i¼1ðtjÞ

and apply the moving boundary integral code (MBIC) and iterate until the Stefan
condition satisfied at a position sn1 ðtjÞ where n1 is the total number of iteration tj.

. At the second time step tjþ1 treat the position sn1 ðtjÞ as an internal point and use
the fixed boundary integral code (FBIC) to find the temperature at that position.
Then guess another position s iðtjþ1Þ and use (MBIC) to obtain sn2 ðtjþ1Þ where n2

is the total number of iteration at time tjþ1.
. Repeat the second step for each time step and stop at the final time step tF, see

Figure 2, taking into consideration that when the time becomes between v/2 and
v, the second moving boundary starts appearing.

5. Numerical results and discussion
A one-dimensional phase change problem subjected to a Dirichlet periodic boundary
condition temperature is analyzed. The time-dependent surface temperature introduces
the surface temperature oscillation amplitude 1 and frequency v as two additional
parameters.

The present algorithm had been tested for different values of Stefan’s number
because the growth of the moving boundary depends very strongly upon it. Both the
amplitude and the frequency of the surface boundary temperature are kept constant
throughout the first case study of the analysis. The numerical values used for the first
case study taken from Rizwan (1999), are shown in Table I.

In the second case study (Voller et al., 1996), the cyclic boundary temperature is
of the form T ¼ Tm þ 1 sinðv tÞ. In this formula, the melting temperature Tm ¼ 0,
v ¼ p=10 and four different cases for the amplitude, 50, 100, 150 and 200 are tested.
All of these amplitudes will result a boundary temperature that will oscillate above and
below the phase change temperature.
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5.1 First case study
The problem under consideration was solved using the NIM and its results can be
found in Rizwan (1999). A comparison between the nodal and boundary integral
methods is made. The comparison concentrated first on the evolution of the moving
boundary at different Stefan number as shown in Figures 3-5.

It is clear that the oscillating boundary temperature impacts the growth rate of the
moving boundary and these impact decreases by increasing the time and the moving
boundary evolves as the square root of the time (Rizwan, 1999). Stefan’s number affects
strongly on the evolution of the moving boundary, i.e. by increasing the this number
and at the same time step the growth rate of the moving boundary goes very quickly.

It is also clear from these figures that there is some difference between the NIM and
the boundary integral method but this difference decreases by increasing the time.
This difference comes from the approximate nature of the two methods in addition to
the iterations procedure within each time step occurred in the present method, but it
can be reduced if a small time step is used and the prescribed error decreased.

The temperature distribution based on the present method is evaluated at a time
t ¼ 16 and at different three values of Stefan number as shown in Figure 6.

5.2 Second case study
In this case and for frequency v ¼ p=10; the time period divided into two parts, the
first part 0 # t , 10 the material melt, then freeze for 10 # t , 20. In the first interval

Figure 1.
Systematic diagram for

the proposed method
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Figure 2.
Flow chart
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the melting front only appears, while in the second interval both melting and freezing
coexist. This case of study were solved for different amplitude ranging from 50 to 200
and the results are shown Figures 7 and 8.

6. Conclusion
In the present paper, the one-dimensional phase change problem with periodically
oscillating temperature on the fixed boundary is analyzed. The analysis is based on the
boundary integral formulation that incorporates a new numerical algorithm for
handling the oscillating boundary condition. In a case where the melting/solidification
was monotonic the results using this algorithm clearly show the effects of the
oscillating boundary temperature on the early development of the phase change and
the effect of the Stefan number on controlling the phase change rate. The algorithm
was also applied to a problem where the boundary temperature oscillated both above
and below the phase change temperature. Results on this problem predicted
simultaneous melting and solidification fronts in the domain. For both test problems

Figure 2.

Input surface 1 v Stefan’s number

T ¼ 1 þ 1 sinvt 0.5 p/2 0.02 1 2
Table I.

Numerical values
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Figure 4.
Moving boundary at
Stefan number ¼ 1.0

Figure 3.
Moving boundary at
Stefan number ¼ 0.02
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Figure 5.
Moving boundary at
Stefan number ¼ 2.0

Figure 6.
Temperature variation at

different Stefan number
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Figure 7.
Case above and below
phase change problem
with 1 ¼ 200

Figure 8.
Case above and below
phase change problem at
different 1
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the results obtained were also in close agreement with prior alternative numerical
approaches based on a NIM (Rizwan, 1999) and an enthalpy method (Voller et al., 1996).
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